\( n \in\{0,1, \ldots, 87\} \)
\( f_{48}=440 \mathrm{~Hz} \)
\( f_{k+12}=2 f_{k} \)
\( f_{n}^{2}=f_{n-k} f_{n+k} \)
\( f_{0}=440/2^4 \mathrm{~Hz} \)
\( f_{0}=440/16 \mathrm{~Hz} \)
\( f_{0}=27,5 \mathrm{~Hz} \)
\( f_{n}=27,5*2^\frac{n}{12} \mathrm{~Hz} \)
\( f_{87}=27,5*2^\frac{87}{12} \mathrm{~Hz} \)
\( f_{87}≈4186 \mathrm{~Hz} \)
\( f_{n}^{2}=f_{n-k} f_{n+k} \)
\( f_{n}^{2}=27,5*2^\frac{n-k}{12} *27,5*2^\frac{n+k}{12} \mathrm{~Hz} \)
\( f_{n}^{2}=27,5^2*2^\frac{2n}{12} \mathrm{~Hz} \)
\( f_{n}^{2}=(27,5*2^\frac{n}{12})^2 \mathrm{~Hz} \)
\( f_{n}=(27,5*2^\frac{n}{12}) \mathrm{~Hz} \)