Aloha :)
Willkommen in der Mathelounge...
Kandidaten für Extremwerte findest du dort, wo die erste Ableitung verschwindet:
$$0\stackrel!=f'(x)=\left(2x^5-3x^4\right)'=10x^4-12x^3=10x^3\cdot\left(x-\frac{6}{5}\right)\implies x=0\;\lor\;x=\frac{6}{5}$$Zur Entscheidung, ob diese Kandidaten tatäschlich Extremwerte sind, bilden wir die zweite Ableitung:$$f''(x)=40x^3-36x^2$$$$f''(0)=0\implies\text{Hier keine Entscheidung möglich.}$$$$f''\left(\frac{6}{5}\right)=\frac{432}{25}>0\implies\text{Minimum}$$
Wir müssen noch weiter ableiten, um zu entscheiden, was mit \(x=0\) ist:
$$f'''(x)=120x^2-72x\quad;\quad f''''(x)=240x-72$$$$f''''(0)=-72<0\implies\text{Maximum}$$
Die erste Ableitung, die für \(x=0\) nicht verschwindet, ist eine gerade Ableitung, nämlich die vierte. Damit liegt bei \(x=0\) ein Extremum vor.
~plot~ 2x^5-3x^4 ; 10x^4-12x^3 ; {0|0} ; {6/5|-3888/3125} ; [[-2|2|-5|5]] ~plot~