f(x) = - 2·x^3 - 11·x^2 + 41·x + 140
f'(x) = - 6·x^2 - 22·x + 41
Extrempunkte f'(x) = 0
- 6·x^2 - 22·x + 41 = 0
x = - √367/6 - 11/6 ∨ x = √367/6 - 11/6
x = 1.359540676 ∨ x = -5.026207343
f(1.3595) = 170.4 --> Hochpunkt
f(-5.026) = -90.01 --> Tiefpunkt