Aufgabe:
A) Bestimme die Koordinaten eines Punktes D so, dass ABCD ein Parallelogramm ist…
A(1/2/1) B(-2/1/3) C(-3/2/4)
B) berechne alle Seitenlängen.
A) AD ist parallel zu BC und gleich lang. Also
\(\vec{OD} = \vec{OA} + \vec{BC}\).
B) Länge eines Vektors
\(\vec{v} = \begin{pmatrix}x\\y\\z\end{pmatrix}\)
ist
\(\sqrt{x^2+y^2+z^2}\)
Bestimme die Länge der Vektoren \(\vec{AB}\) und \(\vec{BC}\).
Ein anderes Problem?
Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos