Hier der Weg ohne Substitution:
\( (sin(x))^{2} \)-\( (cos(x))^{2} \) - sin(x)=0
2*\( (sin(x))^{2} \) - sin(x)=1
\( (sin(x))^{2} \) - \( \frac{sin(x)}{2} \) =\( \frac{1}{2} \)
( sin(x) - \( \frac{1}{4} \) )^2=\( \frac{1}{2} \)+\( \frac{1}{16} \) = \( \frac{9}{16} \)
1.) sin(x)=\( \frac{1}{4} \)+ \( \frac{3}{4} \)=1
x= 90° oder x=\( \frac{π}{2} \)
2.) sin(x)=\( \frac{1}{4} \)- \( \frac{3}{4} \)= -\( \frac{1}{2} \)
x=...