Hallo,
ich rechne mal die erste: Zunächst forme ich den Bruch so um, dass die Gestalt 1+ ... habe:
$$\left( \frac{n-1}{n+4} \right)^{2n+1}=\left( \frac{n+4-5}{n+4} \right)^{2n+1}=\left(1+ \frac{-5}{n+4} \right)^{2n+1}$$
Dann mache ich den Exponenten dazu passend, d.h. ich möchte einen Term n+4 haben:
$$=\left(1+ \frac{-5}{n+4} \right)^{2(n+4)-7}=\left[\left(1+ \frac{-5}{n+4} \right)^{n+4}\right]^2 \left(1+ \frac{-5}{n+4} \right)^{-7}$$
Der Term in der eckigen Klammer liefert jetzt nach Deiner Formel den Grenzwert \(e^{-5}\) - dabei ist es egal, ob n gegen \(\infty\) läuft oder n+4. Das Quadrat an der eckigen Klammer liefert daraus \(e^{-10}\). Der zweite Faktor geht natürlich einfach gegen 1.
Gruß