Aloha :)
Hier hilft die Kettenregel weiter:$$\left(\,4\cdot e^{-\frac{(x-5)^2}{2}}\,\right)'=\underbrace{4\cdot e^{-\frac{(x-5)^2}{2}}}_{\text{äußere Abl.}}\cdot\underbrace{\left(\,-\frac{(x-5)^2}{2}\,\right)'}_{=\text{innere Abl.}}$$Zur Berechnung der inneren Ableitung kannst du nochmal die Kettenregel verwenden:$$\left(\,4\cdot e^{-\frac{(x-5)^2}{2}}\,\right)'=4\cdot e^{-\frac{(x-5)^2}{2}}\cdot\left(\,\underbrace{-\frac{2(x-5)}{2}}_{=\text{äußere Abl.}}\cdot \underbrace{1}_{=\text{innere Abl.}}\,\right)=-4e^{-\frac{(x-5)^2}{2}}(x-5)$$