Aloha :)
Es sind die Extrema einer Funktion \(f(x;y)\) unter einer Nebenbedingung \(g(x;y)=\text{const}\) gesucht:$$f(x;y)=12x+95y\quad;\quad g(x;y)=36x^2+64y^2=2304$$
Leider unterrichten die meisten Professoren das Vorgehen mittels der Lagrange-Funktion. Dabei ist die Sache viel einfacher. Nach Lagrange muss der Gradient der zu optimierenden Funktion eine Linearkombination der Gradienten aller Nebenbedingungen sein. Da es hier nur eine Nebenbedingung gibt, heißt das:$$\operatorname{grad}f(x;y)=\lambda\cdot\operatorname{grad}g(x;y)\quad\implies\quad\binom{12}{95}=\lambda\binom{72x}{128y}$$
Wir dividieren die beiden Koordinatengleichungen und erhalten:
$$\frac{12}{95}=\frac{\lambda\cdot72x}{\lambda\cdot128y}\quad\implies\quad y=\frac{72\cdot95}{128\cdot12}\,x=\frac{3\cdot95}{64}\,x\quad\implies\quad \underline{\underline{y=\frac{285}{64}\,x}}$$
Diese Forderung setzen wir in die Nebenbedingung ein:
$$2304=36x^2+64\left(\frac{285}{64}\,x\right)^2=\left(\frac{36\cdot64}{64}+\frac{285^2}{64}\right)x^2=\frac{83\,529}{64}\,x^2\quad\implies$$$$x=\pm\sqrt{\frac{2304\cdot64}{83\,529}}=\pm\sqrt{\frac{16384}{9281}}=\pm\frac{128}{\sqrt{9281}}$$$$y=\frac{285}{64}\cdot\left(\pm\frac{128}{\sqrt{9281}}\right)=\pm\frac{570}{\sqrt{9281}}$$
Das liefert uns zwei Kandidaten für Extremstellen:
$$P_1\left(\frac{128}{\sqrt{9281}}\,\bigg|\,\frac{570}{\sqrt{9281}}\right)\approx(1,329|5,917)$$$$P_2\left(\frac{-128}{\sqrt{9281}}\,\bigg|\,\frac{-570}{\sqrt{9281}}\right)\approx(-1,329|-5,917)$$
Wegen der Funktionsgleichung ist sofort klar, dass bei \(P_1\) mit \(6\sqrt{9281}\) ein Maximum und bei \(P_2\) mit \(-6\sqrt{9281}\) ein Minimum liegt.