Aufgabe:
Die Matrix \( A=\left[\begin{array}{ccc}2 & 0 & -1 \\ 0 & 2 & -1 \\ 0 & 0 & 1\end{array}\right] \) ist diagonalisierbar. Ist \( \mathcal{B}=\left\{\left[\begin{array}{c}3 \\ -2 \\ 0\end{array}\right]\right\} \) eine Basis des Eigenraums von \( A \) zum Eigenwert \( \lambda=2 \) ?
Problem/Ansatz:
Kann mir jemand erklären, wieso die Vektoren aus B den Eigenraum nicht erzeugen?