Behauptung: Die Zahlen in der \( k \)-ten Zeile sind alle ungeraden natürlichen Zahlen welche durch \( 2k+1 \) teilbar und echt größer als \( 2k+1 \) sind.
Beweis:
1. Sei \( n \) eine Zahl in der \(k\)-ten Zeile, dann existiert ein \( m \ge 0 \) s.d. $$ n = 6k+3 + m (4k+2) = (2k+1)\underbrace{(3+2m)}_{>1}$$
Also sind alle Zahlen in der \(k\)-ten Zeile durch \(2k+1\) teilbar und echt größer als \(2k+1\). Insbesondere enthält jeder Eintrag der Tabelle einen echten Teiler und ist somit zusammengesetzt.
2. Ist hingegen \( n \) eine ungerade natürliche Zahl, welche durch \( 2k+1 \) teilbar und echt größer als \( 2k+1 \) ist, dann existiert ein \( m \ge 2 \) mit \( n = (2k+1)m \). Da \( n \) ungerade ist muss auch \( m \) ungerade sein, insbesondere ist \( m \ge 3 \). \( m - 3 \ge 0 \) ist also eine gerade Zahl und wir finden ein \( l \in \mathbb N_0 \) mit \( m-3 = 2l \) bzw. \( m = 3+2l \). Insgesamt erhalten wir $$ n = (2k+1)(3+2l) = (6k+3) + l (4k+2) $$ weshalb \( n \) in der \( k \)-ten Zeile auftauchen muss.
---
Damit folgen alle Aussagen:
Aus Teil 1 des Beweises folgt direkt, dass keine Primzahl in der Tabelle liegt.
Ist hingegen \( n \) eine ungerade Zahl, welche nicht prim ist, dann hat \( n \) einen echten ungeraden Teiler - etwa \(2k+1 \) - und taucht nach Teil 2 des Beweises auf jeden Fall in der \( k \)-ten Zeile der Tabelle auf.