❶ Die Funktion$$f_1\colon\mathbb R^2\to\mathbb R\text{ mit }\begin{pmatrix}x_1\\x_2\end{pmatrix}\mapsto\begin{cases}\dfrac{x_1^2\cdot x_2^2}{\left(x_1^2+x_2^2\right)^2}&\text{, falls }(x_1,x_2)\ne(0,0)\\0&,\text{ falls }(x_1,x_2)=(0,0)\end{cases}$$ist in \((0,0)\) wegen \(f_1\big((\frac1n,\frac1n)^t\big)=\frac14\) für alle \(n\in\mathbb N\) sicher nicht stetig.
❷ Die Funktion$$f_2\colon\mathbb R^2\to\mathbb R\text{ mit }\begin{pmatrix}x_1\\x_2\end{pmatrix}\mapsto\begin{cases}\dfrac{x_1^3\cdot x_2^2}{\left(x_1^2+x_2^2\right)^2}&\text{, falls }(x_1,x_2)\ne(0,0)\\0&,\text{ falls }(x_1,x_2)=(0,0)\end{cases}$$ist stetig, denn für alle \((x_1,x_2)\ne(0,0)\) gilt$$\qquad\quad\left(x_1^2+x_2^2\right)^2=\left(x_1^2-x_2^2\right)^2+4x_1^2\cdot x_2^2\ge x_1^2\cdot x_2^2$$$$\iff\frac{x_1^2\cdot x_2^2}{\left(x_1^2+x_2^2\right)^2}\le1$$$$\iff\frac{\lvert x_1\rvert\cdot x_1^2\cdot x_2^2}{\left(x_1^2+x_2^2\right)^2}\le\lvert x_1\rvert$$$$\iff\left\lvert f_2\big((x_1,x_2)^t\big)\right\rvert\le\lvert x_1\rvert.$$