Aufgabe:
Auf einer Straße ereignet sich im Durchschnitt ein Unfall pro Woche. Gehen Sie davon aus, dass die Anzahl X der wöchentlichen Unfällte einer Poisson-Verteilung genügt, und berechnen Sie die Wahrscheinlichkeit für zwei oder mehr Unfälle in einer Woche.
Problem/Ansatz:
Ist mein Lösungsweg sinnvoll und richtig?
\( E(X_7) = 7 * \lambda = 1 \Longrightarrow \lambda = \frac{1}{7} \\ P(X \geq 2) = 1 - P(X \lt 2) = 1 - e^{\frac{-1}{7}}*\sum \limits_{n=0}^{2}(\frac{(\frac{1}{7})^n}{n!}) \\ \approx 0,00044 \)