Hallo Sophie,
wenn der Winkel der beiden Diagonalen des Rechtecks \(=40°\) ist (blau), ...
... dann ist der WInkel zwischen der Diagonalen \(AC\) zur Seite \(DC\) genau halb so groß (der rote Winkel). Aus den rechtwinkligen Dreieck \(\triangle DBC\) kann man ablesen:$$\tan \left(\frac{40°}2\right) = \frac {b}{a} \implies b = a \cdot \tan\left( 20°\right)$$Bekanntermaßen ist die Fläche \(F\) des Rechtecks$$F = a \cdot b = 20\,\text{cm}^2$$Setzt man dort das \(b\) ein, folgt daraus$$\begin{aligned}a \cdot b &= 20\,\text{cm}^2 \\ a \cdot a \cdot \tan\left( 20°\right) &= 20\,\text{cm}^2 \\ a^2 &= \frac{20\,\text{cm}^2 }{\tan\left( 20°\right)} \\ a &= \sqrt{\frac {20}{\tan(20°)}} \text{cm} \approx 7,41\,\text{cm} \end{aligned}$$und \(b\) ist dann$$b = a \cdot \tan(20°) \approx 2,70\,\text{cm}$$