Aufgabe:
Also ich hab folgende Vektoren
v1 = \( \begin{pmatrix} 1\\1\\0\\-1 \end{pmatrix} \) v2 = \( \begin{pmatrix} 0\\1\\0\\-1 \end{pmatrix} \) v3 = \( \begin{pmatrix} -2\\0\\1\\0 \end{pmatrix} \) v4 = \( \begin{pmatrix} 0\\2\\1\\-2 \end{pmatrix} \)
Im ℝ4
Dann haben wir noch eine lineare Hülle D mit D:= ⟨v1,v2,v3,v4⟩. Und jetzt will ich zeigen dass v1,v2,v3 eine Basis von D bilden.
Soweit ich weiß ist es ne Basis wenn sich jeder Vektor in D eindeutig als Linearkombination von v1,v2 und v3 schreiben lässt. Hat jemand ne Idee wie ich die Aufgabe lösen kann? Habe noch keine Matrizen gelernt. Also ohne die wäre es super. Danke