Aufgabe:
Vierfeldertafel Wahrscheinlichkeit
Problem/Ansatz:
Ich muss folgende Wahrscheinlichkeit ausrechnen
a) Ihr seht jemanden aus der Gruppe von hinten. Er hat schwarze Haare. Wie
groß ist die Wahrscheinlichkeit, dass er braune Augen hat?
Text erkannt:
\begin{tabular}{|c|c|c|c|}
\hline & braune Augen & keine braunen Augen & insgesamt \\
\hline schwarze Haare & 39 & \( -] \) & \( 4 \Omega \) \\
\hline keine schwarzen Haare & \( 1 \overline{5} \) & \( 1-55 \) & 150 \\
\hline insgesamt & 54 & \( 1-3 \) & 192 \\
\hline
\end{tabular}
Ansatz: 39/192 ?
b) Wie groß ist die Wahrscheinlichkeit, dass eine zufällig ausgewählte Person
ohne braune Augen keine schwarzen Haare hat?
Ansatz: 135/192 ?
c) Berechnet die Wahrscheinlichkeit dafür, dass ein zufällig aus der Gruppe
ausgewählter Mensch braune Augen und schwarze Haare hat.
Probleme
Könnt ihr mir sagen ob ich a und b richtig gemacht habe ?