Aufgabe:
Sei \((a_n)_{n\in \mathbb{N}}\) eine Folge mit \(a_n\in \mathbb{Z}\) für alle \(n\in \mathbb{N}\).
Beweisen Sie, dass \((a_n)_{n\in \mathbb{N}}\) genau dann gegen \(a\) konvergent ist, wenn es einen Index \(n_0\in \mathbb{N}\) so gibt, dass \(a_n = a\) für alle \(n\geq n_0\) ist.
Problem/Ansatz
Liebe Helfer, ich bin überfordert mit dieser Aufgabe. Es wäre schön, wenn mir jemand die Aufgabe plausibel und einen Lösungsvorschlag machen könnte. Vielen Dank!