1) V=a*b*h → Hauptgleichung (Hauptbedingung)
2) b=2*h → h=b/2 1.te Nebengleichung (Nebenbedingung)
3) l=2*a*b+4*h+2*a*b=4*a*b+4*h 2.te Nebengleichung (Nebenbedingungung=
wir haben hier nun 3 Unbekannte,a,b und h und 3 Gleichungen ,also lösbar
2) und
Text erkannt:
\( \underline{\text { Kurvendiskussion }} \)
0
Hinweis:Der "Sattelpunkt" (Terrassenpunkt oder STufenpunkt) nin hoennderer Wendebunkt.bei dem die Tangentensteis ein
NULL
Die Tangente liegt somit "parallel" zur x-Achse. \( f^{\prime}(x)=m=0 \)
Der "Wendepunkt" treant 2 Kurvenbögen, "konkav" und "konvex" \( \underline{K} \) riimang "k" aus dem Mathe-Formelbuch, Xapite1, "Differeatialgeometrie!. Forme1 \( k=y^{\prime \prime} /\left(1+\left(y^{\prime}\right)^{2}\right)^{(3 / 2)} \)
\( k<0 \) konvex (Rechtskrimmung) von oben o \( k>0 \) konkav (Linkskruimanung) von oben gesa
Parabel \( f(x)=a 2 * x^{2}+a 1 * x+a 0 \)
\( f^{\prime}(x)=2 * a 2 * x+a 1 \)
\( \mathrm{f}^{\prime \prime}(\mathrm{x})=2 * \mathrm{a} 2 \quad \) hat somit "keinen Wendepunkt"
kubische Funktion \( f(x)=a 3^{*} x^{3}+a 2^{*} x^{2}+a 1^{*} x+a \)
\( f^{\prime}(x)=3 * a 3^{*} x^{2}+2^{*} a 2^{*} x+a 1 \)
\( \mathrm{f}^{\prime}{ }^{\prime}(x)=6^{*} \mathrm{a} 3^{*} \mathrm{x}+2 \) an \( 2 \quad \) hat "imer einen Wendepunkt"
\( f^{\prime \prime}(x)=6^{*} a^{3} \)
Diese Funktion ergibt sich aus der "ganzrationalen Funktion 4.Gra des" \( y=f(x)=a 4^{*} x^{4}+a 3^{*} x^{3}+a 2^{*} x^{2}+a 1^{*} x+a 0 \)
\( y=f(x)=a 4 * x^{4}+a 2^{*} x^{2}+a 0 \) ist die "biquadratische Funktion" Substitution (ersetzen) \( \mathrm{z}=\mathrm{x}^{2} \) fuhrt zur Form einer "Parabel" \( \frac{f(z)=a 4 * z^{2}+a 2^{*} z+a o}{=} \) Nullstelleneraittlung uber die \( p-q- \) Formel Die biquadratische Funktion 1iegt "achssymetrisch" zur y-Achse. Bedingung "Achssymmetrie" \( f(x)=f(-x) \) und Exponenten n=gerade "Punktsymmetrie" \( \mathrm{f}(\mathrm{x})=-1^{4} \mathrm{f}(-\mathrm{x}) \quad \) n=ungel
3) umgestellt und in 1) eingesetzt ergibt dann eine Funktion der Form y=f(x)=..
dann eine Kurvendiskussion durchführen → Extrema bestimmen → Maximum/Minimum
f`(x)=m=0=...
f´´(x)=...