ich verzweifle an folgender Aufgabe.. Ich hab dazu nichts im Skript gefunden und brauche dringend Hilfe, da das Klausurrelevant ist. Wenns geht, würde ich gerne Lösungsansatz + Lösung bekommen zum eigenen vergleich. Aufgabe:
Text erkannt:
Aufgabe \( 4(\varepsilon-\delta \) -Kriterium der Stetigkeit, \( 5+5+5=15 \) Punkte). Eine mögliche Charakterisierung von Stetigkeit ist das \( \varepsilon-\delta \) - Kriterium:
Sei \( D \subseteq \mathbb{R} \) und sei \( f: D \rightarrow \mathbb{R} \) eine Funktion. \( f \) ist stetig in \( x_{0} \in D \) genau dann, wenn die folgende Aussage gilt:
Für alle \( \varepsilon>0 \) existiert ein \( \delta>0 \), sodass \( \left|f(x)-f\left(x_{0}\right)\right|<\varepsilon \) für alle \( x \in D \) mit \( \left|x-x_{0}\right|<\delta \).
1. Verwenden Sie dieses Kriterium um zu zeigen, dass die Funktionen
(a) \( f(x):=|x| \) in jedem beliebigen \( x_{0} \in \mathbb{R} \)
(b) \( g(x):=\sqrt[3]{x} \) in \( x_{0}=27 \)
stetig sind.
Hinweis zu (ii): Es kann hilfreich sein, die Identität
$$ a-b=\frac{a^{3}-b^{3}}{a^{2}+a b+b^{2}}=\frac{a^{3}-b^{3}}{(a-b)^{2}+3 a b} $$
mit geeigneten \( a, b \in \mathbb{R} \) zu verwenden.
2. Formulieren Sie nun die Negation des \( \varepsilon-\delta \) -Kriteriums und begründen Sie damit, dass die Funktion
$$ h(x):=\left\{\begin{aligned} 1, & \text { für } x>0 \\ 0, & \text { für } x=0 \\ -1, & \text { für } x<0 \end{aligned}\right. $$
an der Stelle \( x_{0}=0 \) nicht stetig ist.