Aufgabe:
Sie verfügen bereits über eine ansehnliche Sammlung an “Überraschungsei-Figuren”, hätten aber noch gerne einen Schlumpf. Sie wissen, dass leider in nur jedem achten Überraschungsei ein Schlumpf sitzt. Um mehr Gewissheit zu haben, führen Sie daher vor dem Kauf den von Ihnen eigens dafür entwickelten Schütteltest durch. Befindet sich ein Schlumpf im Ei, bestätigt dies der Test mit einer Wahrscheinlichkeit von 70%. Ist kein Schlumpf im Ei, fällt der Test zu 89% negativ aus.
Der Schütteltest fällt negativ aus. Mit welcher Wahrscheinlichkeit sitzt wirklich kein Schlumpf im Ei? (Geben Sie das Ergebnis in Prozent an.)
Problem/Ansatz:
Mein Ansatz
| Schlumpf | kein Schlumpf |
|
Test positiv | 0,0875 | 0,09625 | 0,18375 |
Test negativ | 0,0375 | 0,77875 | 0,81625 |
| 0,125 | 0,875 | 1 |
P (Test n. ∩ k. Schlumpf) / P (k. Schlumpf) = 0,77875/ 0,875= 0,89
Ich glaube mein Ergebnis stimmt nicht ganz. Weiß, aber nicht wie sollst rechnen könnte. Kann mir einer vielleicht helfen?