Dreipunktgleichung der Ebene E: x=a+r*(b-a)+s*(c-a)
A(1/2/3) → Ortsvektor a(1/2/3)
B(4/5/1) → Ortsvektor b(4/5/1)
C(0/2/0) → Ortsvektor c(0/2/0)
Richtungsvektor m von Punkt A nach Punkt B → b=a+m → AB=m=b-a
AC=m=c-a)
AB=(4/5/1)-(1/2/3)=(3/3/-2)
AC=(0/2/0)-(1/2/3)=(0/0/-3)
Als Probe die Punkte in die Ebenengleichung einsetzen
x-Richtung:1) ....
y-Richtung: 2) ....
z-Richtung: 3) ....
sind 3 Gleichungen mit den beiden unbekannten Parametern r=... und s=...
Die Parameter r und s müssen dann alle 3 Gleichungen erfüllen,dann liegt der Punkt auf der Ebene
Den Rest schaffst du selber.
Infos,vergrößern und/oder herunterladen
Text erkannt:
Gerade is
Homeseparaneter wird \( \mathrm{r}=1 \) gesetzt
Bleichgesetat ergibt: (bx/by/bz)-(ax/ay/a \( -8 i c h t u n g: b x=a x+1 * m x e r_{B}+a t= \)
\( A(a x / a y / a z) \cdot \operatorname{sind} d x \)
\( 8(B x / b y / b z) \) sind die \( x, y \) und \( z \) koordinaten dei
Abstand von 2 punkten in Raun Hfer ist der "Betrag" von d 21 \( 2-y+1)^{2}+r \)
\( S_{k} a \operatorname{lar} p r o d u k t \quad a^{*} b-a x^{*} b x+a y^{*} b y+a z^{*} b z \)
stehen die beiden Vektoren a und das Skalarprodukt gleich NULL \( 1 ! \) Wsenkrecht" aufeinander,so ist
\( -180-a^{*} b-a x^{*} b x+a y^{*} b y+a z^{*} b z=0 \)
Zbenen:
Dreipunktgleichung der Zben \( t \ldots \)
segeben sind die 3 Punkte \( a(\mathrm{ax} / \mathrm{ay} / \mathrm{az}) \) und \( \mathrm{b}(\mathrm{b} \mathrm{x} / \mathrm{by} / \mathrm{bz}) \) und \( \mathrm{c}(\mathrm{cx} / \mathrm{c} \mathrm{y} \)
\( c(c x / c y / c z) \)
\( 1 \mathrm{t}\left(\overrightarrow{6}+\vec{b}-\vec{a}^{b}\right) \) und \( \vec{v}=(\vec{c}-\overrightarrow{8}) \)
Normalengleichung der Ebene \( \mathrm{E}:(\vec{x}-\vec{a})=\overrightarrow{\vec{d}}=0 \quad \mathrm{n}(\mathrm{nx} / \mathrm{ng} / \mathrm{nz}) \) -Nornalen
Der Normalenvektor steht "senkrecht" auf den Richt unesvelen
Koordinatengleichung der Bbene \( \mathrm{E}: \mathrm{a}^{+} \mathrm{x}+\mathrm{b}^{*} \mathrm{y}+\mathrm{c}^{*} \mathrm{z}+\mathrm{d}=0 \)
\( \underline{\text { Vektorprodukt (Kreuzprodukt) }} \)
Hiermit kann man den "Normalenvektor" fur die Bbene bestingen