\( (x-1)^{2}+y^{2} \geq 4 \cdot\left[x^{2}+(y-1)^{2}\right] \)
\( x^{2}-2 x+1+y^{2} \geq 4 \cdot\left[x^{2}+y^{2}-2 y+1\right] \)
\( x^{2}-2 x+1+y^{2} \geq 4 \cdot x^{2}+4 y^{2}-8 y+4 \)
\( 4 \cdot x^{2}+4 y^{2}-8 y+4 \leq x^{2}-2 x+1+y^{2} \mid-x^{2} \)
\( 3 \cdot x^{2}+4 y^{2}-8 y+4 \leq x^{2}-2 x+1+y^{2} \mid-y^{2} \)
\( 3 \cdot x^{2}+3 y^{2}-8 y+4 \leq-2 x+1 \mid+2 x-4 \)
\( 3 \cdot x^{2}+2 x+3 y^{2}-8 y \leq-3 \mid: 3 \)
\( x^{2}+\frac{2}{3} x+y^{2}-\frac{8}{3} y \leq-1 \mid+ \) quadratische Ergänzungen \( \left(\frac{1}{3}\right)^{2}+\left(\frac{4}{3}\right)^{2} \)
\( \left(x+\frac{1}{3}\right)^{2}+\left(y-\frac{4}{3}\right)^{2} \leq-1+\left(\frac{1}{3}\right)^{2}+\left(\frac{4}{3}\right)^{2} \)
\( \left(x+\frac{1}{3}\right)^{2}+\left(y-\frac{4}{3}\right)^{2} \leq-1+\frac{1}{9}+\frac{16}{9}=\frac{17}{9}-\frac{9}{9}=\frac{8}{9} \)
\( \left(x+\frac{1}{3}\right)^{2}+\left(y-\frac{4}{3}\right)^{2} \leq \frac{8}{9} \)