Hallo,
schreibe die Martingalbedingung für \(M_n\) hin:
\( \mathbb{E}(M_{n+1}|\mathcal{F_n}) = \mathbb{E}(a_{n+1}X_{n+1} + b_{n+1}|\mathcal{F_n}) = a_{n+1}u_nX_n + a_{n+1}v_n + b_{n+1} \)
\( \overset{!}{=} a_nX_n+b_n \)
Daraus folgen die Rekursionsgleichungen \( a_{n+1} = a_nu_n^{-1}, \, b_{n+1} = b_n-a_{n+1}v_n \), welche durch die expliziten Darstellungen \( a_n = \prod_{k = 1}^{n-1}u_k^{-1}, \,\,a_1 = 1 \) und \( b_n = -\sum_{k=1}^{n-1}a_{k+1}v_{k}, \,\,b_1 = 0\) gegeben sind.