Hallo,
Die Iteration im Newton-Verfahren ist$$\begin{aligned} x_{n+1}&= x_n-\frac{f(x_n)}{f'(x_n)} &&|\,f(x)=x^2-2,\quad f'(x)=2x\\x_{n+1}&= x_n - \frac{x_n^2-2}{2x_n} \\ &= \frac{x_n^2+2}{2x_n} \end{aligned}$$wenn Du mit \(x_1=1\) beginnst, so ist \(x_2 = 3/2 \gt \sqrt2\).
Substituiert man nun \(x_n = \sqrt 2 + \epsilon_n\), so erhält man$$\begin{aligned} x_{n+1} &= \frac{4+2\epsilon_n\sqrt 2 + \epsilon_n^2}{2\sqrt 2 +2\epsilon_n} \\&= \frac{\sqrt2\left(2\sqrt2+2\epsilon_n\right) + \epsilon_n^2}{2\sqrt 2 +2\epsilon_n} \\&= \sqrt 2 +\frac{\epsilon_n^2}{2\sqrt 2 +2\epsilon_n}\\\implies \epsilon_{n+1}&= \underbrace{\frac{\epsilon_n^2}{2\sqrt 2 +2\epsilon_n} \lt \frac{\epsilon_n^2}{2\epsilon_n}}_{\text{für}\space \epsilon_n \gt 0} = \frac 12 \epsilon_n \lt \epsilon_n \end{aligned}$$Das (positive) \(\epsilon\) wird also immer kleiner. D.h. errreicht die Folge einen Wert mit \(x_n \ge \sqrt 2\), so ist sie ab hier monoton fallend. Und ihr Grenzwert ist \(x=\sqrt 2\).
Gruß Werner