\( f_{2}(x)=\ln \left(\sqrt{\frac{2-\sin x}{2+\sin x}}\right) \)
\( f_{2} \cdot(x)=\frac{1}{\sqrt{\frac{2-\sin x}{2+\sin x}}} \cdot \frac{1}{2 \cdot \sqrt{\frac{2-\sin x}{2+\sin x}}} \cdot \frac{(-\cos x) \cdot(2+\sin x)-(2-\sin x) \cdot \cos x}{(2+\sin x)^{2}} \)
\( f_{2} \cdot(x)=\frac{1}{\sqrt{\frac{2-\sin x}{2+\sin x}}} \cdot \frac{1}{2 \cdot \sqrt{\frac{2-\sin x}{2+\sin x}}} \cdot \frac{-2 \cos x-\sin x \cdot \cos x-2 \cos x+\sin x \cdot \cos x}{(2+\sin x)^{2}} \)
\( f_{2} \cdot(x)=\frac{1}{\sqrt{\frac{2-\sin x}{2+\sin x}}} \cdot \frac{1}{2 \cdot \sqrt{\frac{2-\sin x}{2+\sin x}}} \cdot \frac{-4 \cos x}{(2+\sin x)^{2}}=-\frac{1}{\sqrt{\frac{2-\sin x}{2+\sin x}}} \cdot \frac{1}{2 \cdot \sqrt{\frac{2-\sin x}{2+\sin x}}} \cdot \frac{4 \cos x}{(2+\sin x)^{2}} \)
\( =-\frac{1}{2 \cdot \frac{2-\sin x}{2+\sin x}} \cdot \frac{4 \cos x}{(2+\sin x)^{2}}=-\frac{1}{(2-\sin x)} \cdot \frac{2 \cos x}{2+\sin x}=-\frac{2 \cos x}{4-\sin ^{2} x}=\frac{2 \cos x}{\sin ^{2} x-4} \)