\( x^{2}+\frac{b}{2} \cdot \sqrt[3]{2 b}=\sqrt[3]{4 b^{2}} \cdot x+\frac{1}{2} \cdot \sqrt[3]{4(a-d)} \)
\( x^{2}-\sqrt[3]{4 b^{2}} \cdot x=\frac{1}{2} \cdot \sqrt[3]{4(a-d)}-\frac{b}{2} \cdot \sqrt[3]{2 b} \)
\( \left(x-\frac{\sqrt[3]{4 b^{2}}}{2}\right)^{2}=\frac{1}{2} \cdot \sqrt[3]{4(a-d)}-\frac{b}{2} \cdot \sqrt[3]{2 b}+\left(\frac{\sqrt[3]{4 b^{2}}}{2}\right)^{2} \mid \mathrm{V} \)
1. \( ) x-\frac{\sqrt[3]{4 b^{2}}}{2}=\sqrt{\frac{1}{2} \cdot \sqrt[3]{4(a-d)}-\frac{b}{2} \cdot \sqrt[3]{2 b}+\left(\frac{\sqrt[3]{4 b^{2}}}{2}\right)^{2}} \)
\( x_{1}=\frac{\sqrt[3]{4 b^{2}}}{2}+\sqrt{\frac{1}{2} \cdot \sqrt[3]{4(a-d)}-\frac{b}{2} \cdot \sqrt[3]{2 b}+\left(\frac{\sqrt[3]{4 b^{2}}}{2}\right)^{2}} \)
2. \( x-\frac{\sqrt[3]{4 b^{2}}}{2}=-\sqrt{\frac{1}{2} \cdot \sqrt[3]{4(a-d)}-\frac{b}{2} \cdot \sqrt[3]{2 b}+\left(\frac{\sqrt[3]{4 b^{2}}}{2}\right)^{2}} \)
\( x_{2}=\frac{\sqrt[3]{4 b^{2}}}{2}-\sqrt{\frac{1}{2} \cdot \sqrt[3]{4(a-d)}-\frac{b}{2} \cdot \sqrt[3]{2 b}+\left(\frac{\sqrt[3]{4 b^{2}}}{2}\right)^{2}} \)