b) Na ja, du hast irgendeine Permutation gegeben. Und Usigma enthält jetzt alle tau, für die gilt: sigma o tau = tau o sigma.
Also zeigst du, warum das neutrale Element e, dass alle n auf sich selbst abbildet, diese Bedingung erfüllt. Das dürfte klar sein. tau = e ( für das besipiel n = 5)
\(\sigma o \tau=\left(\begin{array}{lllll} 1 & 2 & 3 & 4 & 5 \\ \sigma(1) & \sigma(2) & \sigma(3) & \sigma(4) & \sigma(5) \end{array}\right) \) * \(\left(\begin{array}{lllll} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 &4 & 5 \end{array}\right) \) = \(\left(\begin{array}{lllll} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 &4 & 5 \end{array}\right) \) * \(\left(\begin{array}{lllll} 1 & 2 & 3 & 4 & 5 \\ \sigma(1) & \sigma(2) & \sigma(3) & \sigma(4) & \sigma(5) \end{array}\right) =\tau o \sigma\).
Warum dass das gleiche ist sollte klar sein. Allgemien gilt das natürlich einfach, weil das neutrale element wegfällt und dann da einfach sigma=sigma steht.
Jetzt zeigst du noch, wenn du tau und tau' die die Bedingung erfüllen nimmst, warum dann auch tau o tau' die bedingung erfüllt und wenn tau die bedingung erfüllt, warum tau-1 die bedingung erfüllt. und schon bist du fertig.