Hallo :-)
Ich finde den aufgeführten Rechenweg nicht schön und kann dir als Alternative mal meine Herangehensweise zeigen, weil ich sie viel intuitiver finde:
Gegeben: \(V=\mathbb{K}[t]_{\leq 1}\) mit Basis \(\mathcal{B}:=(\underbrace{1+t}_{=:b_1},\underbrace{1+2t}_{=:b_2})\)
Gesucht: Linearformen (lineare Abbildungen) \(b_1^*,b_2^*\in V^*\), sodass die Definition \(b_i^*(b_j)=\delta_{ij}\) für alle \(1\leq i,j\leq 2\) erfüllt ist. Denn damit hat man ja die duale Basis \(\mathcal{B}^*=(b_1^*,b_2^*)\) von \(V^*\) gefunden. Wir suchen also lineare Abbildungen, die eine Basis von \(V^*\) bilden.
Rechnung: Jetzt arbeiten wir nur noch mit der Definition.
Hier sind es nur lineare Polynome. Für einen dualen Basisvektor setzt man hier also ein Polynom der Form \(a_0+a_1\cdot t\) ein und nutzt seine Linearität aus:
\(b_i^*(a_0+a_1\cdot t)=a_0\cdot b_i^*(1)+a_1\cdot b_i^*(t)\). Es interessiert uns nur noch, was \(b_i^*(1)\) und \(b_i^*(t)\) sind.
Man setzt jetzt einfachmal in die gesuchten dualen Basisvektoren ein:
1.) Zu \(b_1^*\):
\(b_1^*(b_1)=b_1^*(1+t)=b_1^*(1\cdot 1+1\cdot t)=1\cdot b_1^*(1)+1\cdot b_1^*(t)=1\)
\(b_1^*(b_2)=b_1^*(1+2\cdot t)=b_1^*(1\cdot 1+2\cdot t)=1\cdot b_1^*(1)+2\cdot b_1^*(t)=0\)
Das kannst du auch gerne in Matrixform überführen:
\(\begin{pmatrix}1&1\\1&2\end{pmatrix}\cdot \begin{pmatrix}b_1^*(1)\\b_1^*(t)\end{pmatrix}=\begin{pmatrix}1\\0\end{pmatrix}\).
Das ist zu lösen. Heraus kommt: \(b_1^*(1)=2\) und \(b_1^*(t)=-1\).
Also lautet der erste duale Basisvektor
\(b_1^*(a_0+a_1\cdot t)=a_0\cdot b_i^*(1)+a_1\cdot b_i^*(t)=a_0\cdot 2+a_1\cdot (-1)=2\cdot a_0-a_1\)
Probier es jetzt mal mit dem zweiten dualen Basisvektor.