Definitionsmenge= (x/0 < x > 14)
Was soll das denn für eine Definitionsmenge sein? Mögliche Schreibweise wäre: $$D=\left\{x \in \mathbb{R}\:\vert\:0 \le x \le 14\right\}$$Lesart: Die Definitionsmenge ist die Menge aller reellen Zahlen x von 0 bis 14. Es gibt hier keinen ersichtlichen Grund, die Ränder des Intervalls, also hier 0 und 14, auszuschließen. Die untere Grenze, also 0, ist sicher gerechtfertigt, dann wird eben nichts produziert. Die obere Grenze, hier 14, muss aber begründet werden. Die Begründung könnte hier darin liegen, dass nur ein Produktionstag betrachtet wird, sodass 14 durch die Kapazitätsgrenze vorgegeben ist. Für die Wertetabelle werden dann die x-Werte
x ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}
verwendet und dazu die entsprechenden Funktionswerte E(x), K(x) und G(x) ermittelt.
Um sich dabei nicht tot zu rechnen, nimmt man zweckmäßigerweise einen Taschenrechner der so was kann, zu Hilfe.