Aufgabe:
Text erkannt:
Es sei \( \mathcal{B}_{1}=\left\{\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\right\} \) die Standardbasis des \( \mathbb{R}^{3} \) und \( \mathcal{B}_{2}=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\} \) die Basis mit
$$ \vec{v}_{1}=\left[\begin{array}{l} 1 \\ 0 \\ 0 \end{array}\right], \vec{v}_{2}=\left[\begin{array}{l} 1 \\ 1 \\ 0 \end{array}\right], \vec{v}_{3}=\left[\begin{array}{l} 0 \\ 1 \\ 1 \end{array}\right] $$
Weiter sei \( f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, f(\vec{x})=\left[\begin{array}{ccc}1 & 1 & -1 \\ 0 & 2 & 1 \\ 0 & 0 & 3\end{array}\right] \vec{x} \)
Berechnen sie die Abbildung von B1 nach B1
Problem/Ansatz:
Ich verstehe nicht ganz, was genau ich machen soll. Ich habe versucht, die Einheitsmatrix des R3 mit f(x) zu multiplizieren, nur scheint mir das komplett falsch zu sein.