Hallo :-)
ein Gruppenhomomorphismus \(f: G \to H\) erfüllt zunächst \(f(g_1*g_2)=f(g_1)\circ f(g_2)\) für alle \(g_1,g_2\in G\). Das gilt zb für diese Abbildung:
\(f:\ \mathbb{R}\to \mathbb{R}_{>0},\ x\mapsto e^x\).
Dabei ist hier \(G:=\mathbb{R}\) und \(H:=\mathbb{R}_{>0}\), wobei auf \(G\) die Addition als Verknüpfung und auf \(H\) die Multiplikation als Verknüpfung definiert ist. In Kurzform also \((G,+)\) und \((H,\cdot )\). Diese beiden Grundmengen bilden dann mit den erklärten Verknüpfungen eine Gruppe.
Es gilt nämlich für alle \(a,b\in \mathbb{R}\) die Eigenschaft
\(\underbrace{f(a+b)}_{\in H}=e^{a+b}=e^a\cdot e^b=\underbrace{f(a)}_{\in H}\cdot \underbrace{f(b)}_{\in H}\).
\(f\) ist nun sogar ein Gruppenisomorphismus, da es eine Inverse (einen Gruppenhomomorphismus) \(g:\ \mathbb{R}_{>0}\to \mathbb{R}\) gibt, mit
\(f\circ g=id_{\mathbb{R}_{>0}}(=id_H)\) und \(g\circ f=id_{\mathbb{R}}(=id_G)\). Dies erfüllt \(g(x)=\ln(x)\), der natürliche Logarithmus.
Diese beiden Eigenschaften \(f\circ g=id_{\mathbb{R}_{>0}}(=id_H)\) und \(g\circ f=id_{\mathbb{R}}(=id_G)\) sind dazu äquivalent, dass \(f\) eine bijektive Abbildung ist.