Aloha :)
Es gibt hier zwei geeignete Rechenwege...
1) Kettenregel:$$\left(\;(\cos x-\sin x)^2\;\right)'=\underbrace{2(\cos x-\sin x)}_{=\text{äußere Abl.}}\cdot\underbrace{(\cos x-\sin x)'}_{=\text{innere Abl.}}$$$$=2(\cos x-\sin x)\cdot(-\sin x-\cos x)=-2(\cos x-\sin x)\cdot(\cos x+\sin x)$$$$=-2(\cos^2x-\sin^2x)=-2\cos(2x)$$
2) Produktregel:$$\left(\;(\cos x-\sin x)^2\;\right)'=(\;\underbrace{(\cos x-\sin x)}_{=u}\cdot\underbrace{(\cos x-\sin x)}_{=v}\;)'$$$$=\underbrace{(-\sin x-\cos x)}_{=u'}\cdot\underbrace{(\cos x-\sin x)}_{=v}+\underbrace{(\cos x-\sin x)}_{=u}\cdot\underbrace{(-\cos x-\cos x)}_{=v'}$$$$=-2(\cos x-\sin x)\cdot(\sin x+\cos x)=-2(\cos^2x-\sin^2x)=-2\cos(2x)$$