Aloha :)
$$X\coloneqq\text{Anzahl defekter Kugeln pro Packung}$$
Zur Bestimmung der Wahrscheinlichkeit \(P(X\ge3)\), mindestens \(3\) defekte Kugeln in einer Packung zu finden, benutzen wir das Gegenereignis, subtrahieren also von der Gesamt-Wahrscheinlichkeit \(1\) die Wahrscheinlichkeit \(P(X\le2)\) höchstens \(2\) defekte Kugeln zu finden:
$$P(X\ge3)=1-P(X\le2)=1-P(X=0)-P(X=1)-P(X=2)$$$$\phantom{P(X\ge3)}=1-\binom{16}{0}\cdot0,02^0\cdot0,98^{16}-\binom{16}{1}\cdot0,02^1\cdot0,98^{15}-\binom{16}{2}\cdot0,02^2\cdot0,98^{14}$$$$\phantom{P(X\ge3)}=1-0,98^{16}-16\cdot0,02\cdot0,98^{15}-\frac{16\cdot15}{2}\cdot0,02^4\cdot0,98^{14}$$$$\phantom{P(X\ge3)}\approx0,03984570\approx3,98\%$$