\( \left(\frac{1}{2 k}\right)^{2} \cdot\left[\frac{\left(\frac{3 k^{2}}{s}\right)^{2}}{2}\right]+\left(\frac{k}{2 s}\right)^{-1}= \)
\( =\frac{1}{4 k^{2}} \cdot \frac{\frac{9 k^{4}}{s^{2}}}{2}+\frac{k^{-1}}{(2 s)^{-1}}= \)
\( =\frac{1}{4 k^{2}} \cdot \frac{9 k^{4}}{2 s^{2}}+\frac{2 s}{k}= \)
\( =\frac{1}{4} \cdot \frac{9 k^{2}}{2 s^{2}}+\frac{2 s}{k}= \)
\( =\frac{9 k^{2}}{8 s^{2}}+\frac{2 s}{k} \)