Moinsen,
bilde erstmal die Differenz aus den beiden Summen sm-1 und sn-1, dann wirst du merken, dass alle Glieder von 0 bis n-1 wegfallen wegen m>n. Dann hast du da noch eine summe stehen von n bis m-1, dass ist aber eine Teleskop-Summe. Dort fliegen alle Glieder raus bis auf das erste und letzte Glied, in dem Fall -an+am also hättest du die Ungleichung schonmal gezeigt. Dann wissen wir aber auf Grund der konvergenz von sn, dass sm-1 - sn-1 gegen 0 konvergiert insbesondere auf Grund der Ungleichung an-am auch also eine Chauchy-Folge ist. Wir bewegen uns aber in R also ist jede Chauchy Folge auch konvergent
Liebe Grüße