Aloha :)
Wir sind optimistisch und gehen davon aus, dass der Grenzwert existiert, schließlich sollen wir ihn ja bestimmen. Dann können wir die unendliche Summe in zwei konvergente unendliche Summen aufteilen:
$$\phantom{=}\sum\limits_{n=0}^\infty\frac{(-2)^n\cdot(7^n+n!)}{7^n\cdot n!}=\sum\limits_{n=0}^\infty\frac{(-2)^n\cdot7^n+(-2)^nn!}{7^n\cdot n!}=\sum\limits_{n=0}^\infty\frac{(-2)^n\cdot7^n}{7^n\cdot n!}+\sum\limits_{n=0}^\infty\frac{(-2)^nn!}{7^n\cdot n!}$$$$=\sum\limits_{n=0}^\infty\frac{(-2)^n}{n!}+\sum\limits_{n=0}^\infty\left(-\frac27\right)^n$$Die erste Summe ist die Potenzreihte der \(e\)-Funktion. die zweite Summe ist eine geometrische Reihe:$$=e^{-2}+\frac{1}{1+\frac{2}{7}}=\frac79+\frac1{e^2}\approx0,9131$$
Deine Vorgehensweise war also richtig. Du musst allerdings sicherstellen, dass die Summe, die du aufspalten möchtest, konvergiert. Aber das sichert uns ja die Aufgabenstellung zu.