f) Nullstellenform der kubischen Parabel
N₁(-\( \sqrt{3} \)|0) N₂(0|0) N₃(\( \sqrt{3} \)|0)
f(x)=a*(x+\( \sqrt{3} \))*x*(x-\( \sqrt{3} \))
P(1|-1)
f(1)=a*(1+\( \sqrt{3} \))*1*(1-\( \sqrt{3} \))
1.) a*(1-3)=-1 → a=\( \frac{1}{2} \)
f(x)=\( \frac{1}{2} \)*x*(x^2-3)=\( \frac{1}{2} \)*x^3 - \( \frac{3}{2} \)* x
\( A_{1}=\int \limits_{-\sqrt{3}}^{0}\left(\frac{1}{2} x^{3}-\frac{3}{2} x\right) \cdot d x=\left[\frac{x^{4}}{8}-\frac{3}{4} x^{2}\right]_{-\sqrt{3}}^{0}=[0]-\left[\frac{(-\sqrt{3})^{4}}{8}-\frac{3}{4} \cdot(-\sqrt{3})^{2}\right]=\frac{9}{8} \)
\( A_{2}=\left[\frac{x^{4}}{8}-\frac{3}{4} x^{2}\right]_{0}^{1}=\left[\frac{1^{4}}{8}-\frac{3}{4} \cdot 1^{2}\right]-0=-\frac{5}{8} \)
Da es keine negativen Flächeninhalte gibt, gilt \( A_{2}=\left|-\frac{5}{8}\right|=\frac{5}{8} \)
\( A=A_{1}+A_{2}=\frac{9}{8}+\frac{5}{8}=\frac{7}{4} \)