Aloha :)
Gegeben:\(\quad f:\;A\to B\quad;\quad g:\;B\to C\).
Surjektiv bedeutet, dass jedes Element der Zielmenge mindestens 1-mal erreicht wird.
Wähle ein \(c\in C\) beliebig, aber fest. Da \(g\) surjektiv ist, gibt es ein \(b\in B\) mit \(c=g(b)\). Da \(f\) ebenfalls surjektiv ist, gibt es ein \(a\in A\) mit \(b=f(a)\). Für das gewählte \(c\) gibt es also ein \(a\) mit \(c=g(f(a))\). Da \(c\) beliebig gewählt werden kann, gilt also:$$\forall c\in C:\;\exists a\in A:\;c=(g\circ f)(a)$$Wenn also \(f\) und \(g\) surjektiv sind, ist auch die Verkettung \(g\circ f\) surjektiv.