Man nehme an es gäbe \( f(x)=x \) und \( f(y)=y . \) Dann folgt aus
\( |f(x)-f(y)|=|x-y| \leq \kappa|x-y| \)
Da \( 0<\kappa<1 \) folgt direkt, dass
\( |x-y|=0 \Longleftrightarrow x=y \)
da
\( \kappa|x-y|<|x-y| \)
für \( |x-y|>0 \) gilt.
Nun betrachten wir die rekursive Folge
\( u_{n+1}=f\left(u_{n}\right) \)
Erstmal ist leicht zu erkennen, dass \( f \) stetig ist, da für ein beliebiges \( x \in[a, b] \) und \( \epsilon>0 \) für \( \delta=\epsilon / \kappa \)
\( \forall y:|x-y|<\delta \Longrightarrow|f(x)-f(y)| \leq \kappa|x-y|<\kappa \cdot \delta=\kappa \cdot \frac{\epsilon}{\kappa}=\epsilon \)
52
Du kennst nun sicherlich die Regel, dass man den Limes in stetige Funktionen reinziehen kann (wenn nicht, dann ist es eine sehr einfache Übung, das zu beweisen). Nehmen wir also an \( u_{n} \) konvergiert gegen \( u \) (wir haben noch nicht bewiesen, dass \(u_n\) überhaupt konvergiert, aber rein hypothetisch), so gilt
\( \lim \limits_{n \rightarrow \infty} u_{n+1}=u \text { und } \lim \limits_{n \rightarrow \infty} u_{n+1}=\lim \limits_{n \rightarrow \infty} f\left(u_{n}\right)=f\left(\lim \limits_{n \rightarrow \infty} u_{n}\right)=f(u) \)
und somit muss
\( f(u)=u \)
vom Grenzwert erfüllt werden.
Um zu sehen, dass die Folge konvergiert, kannst du beispielweise das Cauchy Kriterium anwenden. Zuerst zeigen wir, dass sie beschränkt ist: Sei \( \alpha=\left|u_{1}-u_{0}\right| . \) Dann haben wir
\( \begin{array}{c} \left|u_{n}-u_{n-1}\right|=\left|f\left(u_{n-1}\right)-f\left(u_{n-2}\right)\right| \leq \kappa\left|u_{n-1}-u_{n-2}\right| \\ \Longrightarrow\left|u_{n}-u_{n-1}\right| \leq \kappa^{n-1} \alpha \end{array} \)
Somit gilt also für alle \( n \)
\( \left|u_{n}-u_{0}\right|=\left|\sum \limits_{j=0}^{n-1}\left(u_{j+1}-u_{j}\right)\right| \leq \sum \limits_{j=0}^{n-1}\left|u_{j+1}-u_{j}\right| \leq \sum \limits_{j=0}^{n-1} \kappa^{j}\alpha=\frac{1-\kappa^{n}}{1-\kappa} \alpha\leq \frac{1}{\kappa-1}\alpha=: M \)
Sei nun \( \epsilon>0 \) beliebig. Wir wählen \( N>0 \) so, dass gilt
\( 2 M \kappa^{N}<\epsilon \implies \ln(\kappa)N < \frac{\epsilon}{2M} \iff N> \frac{\epsilon}{2M\ln(\kappa)} \)
(Bemerkung: Wichtig, dass sich hier das Vorzeichen umdreht, da wegen \(0<\kappa <1\) gilt \(\ln(\kappa)<0\))
Die Wahl wird gleich ersichtlich, denn für beliebige \( n, m \geq N \) gilt nun
\( \begin{aligned} \left| u_{n}-u_{m}\right| & \leq \kappa^{N}\left|u_{n-N}-u_{m-N}\right| \leq \kappa^{N}\left|u_{n-N}-u_{0}+u_{0}-u_{m-N}\right| \\ & \leq \kappa^{N}\left(\left|u_{n-N}-u_{0}\right|+\left|u_{0}-u_{m-N}\right|\right) \leq \kappa^{N}(M+M)=2 \kappa^{N} M<\epsilon \end{aligned} \)
Das Ganze hat eine recht schöne intuitive Bedeutung: Nehme wir mal an, \(\kappa=0.5\), und wir wählen
\(x=2, \ y=1\). Dann gilt nach einer Iteration
\( |f(x)-f(y)| \leq \frac{1}{2}|x-y|=\frac{1}{2}|2-1|=\frac{1}{2} \)
Nach einer weiter Iteration hast du dann
\( |f(f(x))-f(f(y))| \leq \frac{1}{2}|f(x)-f(y)| \leq \frac{1}{4}|x-y|=\frac{1}{4} \)
Du siehst sicherlich, wo das Ganze hingeht. Man kann sich das wir einen Wasserstrudel vorstellen, der Punkt \(x\)
welcher \(f(x)=x\) erfüllt bildet den Mittelpunkt des Strudels und zieht alle umliegenden Punkte zu sich.