Sei l ⊂ ℝ3 die durch die Punkte (1, 0, 1) und (2, 0, 0) gehende Gerade und E ⊂ ℝ3 die senkrecht auf l
stehende und durch den Punkt (1, 1, 1) gehende Ebene.
(a) Bestimmen Sie einen Punkt A ∈ ℝ3 und einen Vektor u ∈ ℝ3 für die l = {A + λu | λ ∈ ℝ} gilt.
(b) Finden Sie einen Punkt B ∈ ℝ3 und Vektoren v, w ∈ ℝ3 für die E = {B + µv + νw | µ, ν ∈ ℝ} ist.
(c) Finden Sie einen Vektor n ∈ ℝ3 und einen Wert a ∈ ℝ, für die die Menge der Lösungen x∈ℝ3 der Gleichung
⟨n,x⟩ = a
gleich E ist.
(d) Bestimmen Sie eine Matrix A ∈ ℝ2×3 und einen Vektor b ∈ ℝ2 für die die Menge der Lösungen x ∈ ℝ3 der Gleichung
Ax=b
gleich l ist.
(e) Berechnen Sie alle Schnittpunkte l ∩ E von der Gerade l und der Ebene E.
Danke im Voraus