Wir haben also
\( \mathcal{B}_{\mathcal{P}_{1}}=\{1, t\}, \quad \mathcal{B}_{\mathcal{P}_{2}}=\left\{1, t, t^{2}\right\} \)
Nun schauen wir, auf welche Elemente die Basiselemente abgebildet werden:
\( f(1)=\int \limits_{0}^{t} 1 \mathrm{~d} t=t, \quad f(t)=\int \limits_{0}^{t} t \mathrm{~d} t=\frac{1}{2} t^{2} \)
Mit den standard Koordinatenabbildungen ergibt sich also
\( \left[\begin{array}{l} 1 \\ 0 \end{array}\right] \mapsto\left[\begin{array}{l} 0 \\ 1 \\ 0 \end{array}\right] \text { und }\left[\begin{array}{l} 0 \\ 1 \end{array}\right] \mapsto\left[\begin{array}{l} 0 \\ 0 \\ \frac{1}{2} \end{array}\right] \)
was zur Abbildungsmatrix
\( \mathbf{A}=\left[\begin{array}{ll} 0 & 0 \\ 1 & 0 \\ 0 & \frac{1}{2} \end{array}\right] \)
führt.