Guten Tag, wie würdet ihr die Aufgabe lösen? Ich komm bei Extremwertaufgaben irgendwie nicht weit.
In einem in kartesischen Koordinaten (x, y, z) vorliegenden dreidimensionalen Hologramm wird durch die Einheitskugel B = ⟨(x, y, z) ∈ R3: x2 + y2 + z2 ≤ 1⟩ ein im Koordinatenursprung zentrierter georteter Himmelskörper dargestellt. Eine weitere Analyse ergibt, dass die an einem Punkt (x, y, z) ∈ B vorliegende (skalierte) Konzentration eines auf der Erde selten vorkommenden und daher gefragten Erzes durch die Funktion f : B → R mit f(x, y, z) = exp(x2 − y2 + z2) gut beschrieben wird.
Bestimmen Sie, an welchen Punkten von B die Konzentration des Erzes am höchsten bzw. am niedrigsten ist. Wo lohnt sich demnach der Abbau besonders?