\( \int x^{2} \cdot \ln x \cdot d x \)
\( u^{\prime}=x^{2} \rightarrow u=\frac{1}{3} x^{3} \)
\( v=\ln x \rightarrow v \cdot=\frac{1}{x} \)
\( \int x^{2} \cdot \ln x \cdot d x=\frac{1}{3} x^{3} \cdot \ln x-\int \frac{1}{3} x^{3} \cdot \frac{1}{x} \cdot d x= \)
\( =\frac{1}{3} x^{3} \cdot \ln x-\int \frac{1}{3} x^{2} \cdot d x= \)
\( =\frac{1}{3} x^{3} \cdot \ln x-\frac{1}{9} x^{3}+C \)