Hallo,
verwende die Formel \(f'(x)=\lim\limits_{h\to 0}\frac{f(x+h)-f(x)}{h}\)
\(f'(x) =\lim\limits_{h\to 0}\frac{(x+h)^{4}-x^{4}}{h} \)
\( =\lim\limits_{h\to 0}\frac{x^{4}+4 x^{3} h+6 x^{2} h^{2}+4 x h^{3}+h^{4}-x^{4}}{h} \)
\( =\lim\limits_{h\to 0}\frac{4 x^{3} h+6 x^{2} h^{2}+4 x h^{3}+h^{4}}{h} \)
\( =\lim\limits_{h\to 0}\frac{h \cdot\left(4 x^{3}+6 x^{2} h+4 x h^{2}+h^{3}\right)}{h} \)
\( =\lim\limits_{h\to 0}4 x^{3}+6 x^{2} h+4 x h^{2}+h^{3} \)
\( =4 x^{3} \)
Gruß, Silvia