Aufgabe:
\( a_{n}:=1 \) für \( n \in \mathbb{N}_{0}, b_{0}:=-1, b_{n}:=2^{-n} \) für \( n \in \mathbb{N} \),
Untersuchen Sie jeweils, ob das Cauchyprodukt der Reihen \( \sum \limits_{n=0}^{\infty} a_{n} \) und \( \sum \limits_{n=0}^{\infty} b_{n} \) konvergiert und geben Sie gegebenenfalls den Reihenwert an.
Problem/Ansatz:
Wir haben bei dieser Aufgabe das Cauchy-Produkt ausgerechnet und bekommen als Resultat : \( \sum \limits_{n=0}^{\infty}=\left(\frac{1}{2}\right)^{n} \cdot \frac{1-\left(\frac{1}{2}\right)^{n+1}}{1-\frac{1}{2}} \)
Mit dem Quotientenkriterium kann man beweisen, dass das Cauchy-Produkt absolut konvergiert aber wie kann man jetzt den Reihenwert rausfinden?
Danke für eure Hilfe