Hallo,
\( f'(x)=\lim \limits_{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \)
Hier
\( f'(x)=\lim \limits_{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\ f'(2)=\lim \limits_{h \rightarrow 0} \frac{f(2+h)-f(2)}{h} \\ f'(2)=\lim \limits_{h \rightarrow 0} \frac{-2(2+h)^2+25(2+h)-1-(-2\cdot 2^2+25\cdot2-1)}{h}\\ f'(2)=\lim \limits_{h \rightarrow 0} \frac{-2(4+4h+h^2)+50+25h-1-41}{h}\\ f'(2)=\lim \limits_{h \rightarrow 0} \frac{-8-8h-2h^2+50+25h-42}{h}\\ f'(2)=\lim \limits_{h \rightarrow 0} \frac{17h-2h^2}{h}\\ f'(2)=\lim \limits_{h \rightarrow 0} \frac{\cancel{h}\cdot(17-2h)}{\cancel{h}}\\ f'(2)=\lim \limits_{h \rightarrow 0} 17-2h\\\\ f'(2)=17\)
Gruß, Silvia