Text erkannt:
Es sei \( \mathbb{K} \) ein Körper und
\( A:=\left(\begin{array}{ccccc} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right) \in \mathbb{K}^{5 \times 5}, B:=\left(\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ * & 0 & \# \end{array}\right) \in \mathbb{R}^{4 \times 3} . \)
a) Bestimmen Sie für alle \( k \in \mathbb{N} \) den Rang von \( A^{k} \), d.h. vom \( k \)-fachen Produkt \( \underbrace{A \cdot \ldots \cdot A}_{k \text { mal }} \).
b) Bestimmen Sie in Abhängigkeit von * und # den Rang von \( B \).
Ich habe Probleme mit der Teilaufgabe b). Die a) habe ich noch hingekriegt, aber ich kriege bei b) einfach keine Lösung. Ich bitte um Hilfe.
Vielen Dank