0 Daumen
353 Aufrufe

Screenshot 2021-12-19 161419.png

Text erkannt:

Es sei \( \mathbb{K} \) ein Körper und
\( A:=\left(\begin{array}{ccccc} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right) \in \mathbb{K}^{5 \times 5}, B:=\left(\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ * & 0 & \# \end{array}\right) \in \mathbb{R}^{4 \times 3} . \)
a) Bestimmen Sie für alle \( k \in \mathbb{N} \) den Rang von \( A^{k} \), d.h. vom \( k \)-fachen Produkt \( \underbrace{A \cdot \ldots \cdot A}_{k \text { mal }} \).
b) Bestimmen Sie in Abhängigkeit von * und # den Rang von \( B \).

Ich habe Probleme mit der Teilaufgabe b). Die a) habe ich noch hingekriegt, aber ich kriege bei b) einfach keine Lösung. Ich bitte um Hilfe.

Vielen Dank

Avatar von

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community