Aufgabe:
Zeigen Sie:
(a) Ist f: R → R eine n-mal differenzierbare Funktion und hat f(n) höchstens k verschiedene
Nullstellen, so hat f höchstens k + n verschiedene Nullstellen.
(b) Die Gleichung 2x = 1 + x2 hat genau drei Lösungen.
Problem/Ansatz:
Ich bin mir nicht sicher, wie ich die a lösen soll und bei der b beweisen soll, dass es genau drei Lösungen gibt (die 0 als Lösung ist ja zum Beispiel offensichtlich)…