Ist \(f:(a,b)\to \mathbb{R}\) mit \(f'=f\), dann ist
\(\frac{\mathrm{d}}{\mathrm{d}x}\frac{f(x)}{\mathrm{e}^{x}}=\frac{f'(x)\mathrm{e}^{x}-f(x)\mathrm{e}^{x}}{\mathrm{e}^{2x}}=\frac{f(x)\mathrm{e}^{x}-f(x)\mathrm{e}^{x}}{\mathrm{e}^{2x}}=0\),
also ist \(\frac{f}{\mathrm{e}^x}\) konstant.