Betriebsoptimum
K(x) = 5·x^3 - 10·x^2 + 40·x + 40
k(x) = 5·x^2 - 10·x + 40 + 40/x
k'(x) = 10·x - 10 - 40/x^2 = 0 → x = 2 ME
Langfristige Preisuntergrenze
k(2) = 5·2^2 - 10·2 + 40 + 40/2 = 60 GE/ME
Gewinnmaximale Menge
G(x) = (5·x^2 + 90·x) - (5·x^3 - 10·x^2 + 40·x + 40)
G(x) = - 5·x^3 + 15·x^2 + 50·x - 40
G'(x) = - 15·x^2 + 30·x + 50 = 0 --> x = 3.082 ME
Maximaler Gewinn
G(3.082) = - 5·3.082^3 + 15·3.082^2 + 50·3.082 - 40 = 110.21 GE