Aufgabe:
Gegeben ist die Funktion
\( F\left(x_{1}, x_{2}\right)=12 x_{1}^{0.52} x_{2}^{0.34} . \)
Berechnen Sie die folgenden Größen an der Stelle \( \mathbf{a}=(9,3)^{\top} \) unter Beibehaltung des Niveaus der Funktion \( F(\mathbf{a}) \). (Gehen Sie außerdem davon aus, dass \( x_{1} \geq 0 \) und \( x_{2} \geq 0 \) gilt.)
a. Momentane Änderungsrate von \( x_{1} \) bei Veränderung von \( x_{2} \) um eine marginale Einheit. \( -0.51 \)
b. Exakte Veränderung von \( x_{1} \), wenn sich \( x_{2} \) um \( 0.2 \) Einheiten erhöht.
c. Approximative Veränderung von \( x_{1} \), wenn sich \( x_{2} \) um \( 0.2 \) Einheiten erhöht. \( -0.1 \)
Problem/Ansatz:
Bitte um Hilfe